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Abstract
This paper describes about analysis of wireless capsule endoscopy (WCE) us-
ing pattern recognition and statistical analysis. Specifically, we introduce a
novel approach to discriminate between oesophagus, stomach, small intestine,
and colon tissue present in WCE. Automatic image analysis can expedite this
task by supporting the clinician and speeding up this process. Video segmen-
tation of WCE into the four parts of the gastrointestinal tract is one way to aid
the physician. The segmentation approach described in this paper integrates
pattern recognition with statistical analysis. Initially, a support vector machine
is applied to classify video frames into four classes using a combination of
multiple color and texture features as the feature vector. A Poisson cumulative
distribution, for which the parameter depends on the length of segments, mod-
els a prior knowledge. A priori knowledge together with inter-frame difference
serves as the global constraints driven by the underlying observation of each
WCE video, which is fitted by Gaussian distribution to constrain the transition
probability of hidden Markov model. We also used image registration method
to confirm our segmentation results. Experimental results demonstrated effec-
tiveness of the approach.
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1. INTRODUCTION

Wireless capsule endoscopy (WCE) [14] is an emerging tech-

nology for non-invasive inspection of the entire gastrointesti-

nal (GI) tract. An exam by WCE commences with the patient

swallowing a capsule (11 × 26mm). The capsule is integrated

with a battery with 8-hour life, a camera, and an optical dome
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with light emitting diodes (Figure 1a). The capsule is propelled

through the GI tract by normal paristalis (Figure 1b), captur-

ing two 256 × 256-pixel frames per second. The frames are

transmitted to a video recorder (shown in both Figure 1a and c)

worn by the patient. When the exam is complete, the frames

(in MPEG format) are uploaded to a PC where they may be

inspected. One manufacturer (Given Imaging, Ltd.) provides

a rapid reader (RR) for which a screen shot is shown in Fig-

ure 1c. While colonoscopy allows direct inspection of the large

intestine, lesions in the esophagus, stomach, and small intes-

tine are generally not recognized until symptoms appear. Early

detection and patient survival are correlated. The incidence of

colon cancer death is roughly 30% that of the incidence of new

diagnoses. By contrast, the ratio of death incidence to new di-

agnoses is roughly 50% elsewhere in the GI tract [1, 15, 12].

The difference can be attributed in part to the lack of clinically

available diagnosis methods comparable to colonoscopy. WCE

is one approach to filling that void.

Figure 1: WCE system: (a) capsule and data recorder; (b) GI transit; (c) Rapid

Reader from Given Imaging, Ltd.

Additional details of the clinical application of WCE are

given in Section 2. It suffices for the moment to note that an

exam by WCE produces a video of the GI tract consisting of

approximating 50,000 frames. The miniaturized and swallow-

able camera travels in the GI tract with progression through the

entrance/esophagus, stomach, small intestine, and the large in-

testine. However, a significant disadvantage of the technology is

the time that the physician must spend examining the video. An

experienced physician may spend 1-1.5 hours for each video.

Automating inspection is a long term goal. That goal is not

likely to be attained in the near future. In the meantime, steps to-

ward automation are desirable and will have benefits such as re-

ducing inspection time and improving the diagnostic accuracy.

The aim of this research is to determine methods for seg-

menting the video according to anatomical region. It enables

other technologies such as adapting classification and diagnos-

tic techniques to the differences in tissue among the organs. In-

dexing the video by segment allows a physician to locate, or

re-locate, an organ for additional attention. The segmentation

task presented here has a simple workflow – classify the frames

independently by organ; use the classification results to condi-

tion the inter-frame probability of transition from one organ to

the next. Videos from 15 patients were used in training and test-

ing. The results indicate high accuracy and great promise for

the technique.

2. Background

The gastrointestinal tract consists of four major zones: En-

trance (Z1) – lies between the beginning of the video exam and

the capsule entering the stomach. As only seconds are required

for the capsule to travel through the esophagus to the entrance of

the stomach, it is a small topographic zone. Stomach (Z2) – The

stomach topographic area begins at the esogastric junction and

ends at the pylorus. Small intestine (Z3) – The small intestine

is the most important zone of the exam because a large number

of events can be detected and conventional endoscopy does not

reach much of it. Large intestine (Z4) – This topographic zone

is bounded by the ileocecal valve and the end of the video.

Topographic segmentation research in the context of WCE
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video is guided by two concepts. One, the event-detection ap-

proach [17], takes the video as a serial time signal. The other

focuses on labeling all the frames in a WCE video into four

classes. Typically, either concept involves feature extraction.

Naturally, the performance of the second approach partially de-

pends on the choice of classifier.

Approaches based on the first concept require that video

frames be taken in time order to form a temporal signal. Sig-

nal processing techniques are used for detection of abnormality

and events such as segment transitions. In [3], the authors de-

ploy energy-based boundary detection for the classification of

events. General and special features are extracted from video

frames for classification. In this paper, the authors focus on

two main events, bleeding and organ transitions. The latter seg-

ments the video. The classification phase involves color signal

processing in which the hue component of the HSV color model

is used to characterize peristalses and the color signal are pro-

cessed after a fast Fourier transform.A rule-based assessment

system is constructed for final classification using a high fre-

quency content (HFC) function. Characteristics of color tones

of the digestive organs are utilized to distingush between diges-

tive organs in [13]. Dominant colors for every organ is learned

and are combined to construct a representative signal to detect

transitions between organs.

Approaches based on the second concept depend on the clas-

sification of WCE frames by organ. In [5], present a solu-

tion that considers the three boundaries – esogastric junction

(B1), pylorus (B2), and ileocecal valve (B3). Homogeneous tex-

ture [28] and scalable color [4] from the MPEG-7 standard are

the low-level features employed. The performance of a Bayesian

classifier and a support vector machine are compared based on

the single classification results.Believing that capsule exhibits

motion pecurior to different organs, Mackiewicz in [23] devel-

oped a motion descriptor. Additionally, features were extracted

from subimages within a frame that had the least obscuration.

Because feature extraction is critical for classification-based ap-

proaches in topographical segmentation, many color and texture

descriptors and even shape related descriptors have been applied

to represent WCE frames informatively [21, 10, 2]. A color

texture descriptor extended LBP was introduced specifically for

WCE images in [10]. A custom set of Haar features are ex-

tracted from WCE images in [9].Beyond single classification

scheme a classification casacade is proposed in [25] to classify

capsule endoscopy images into semantic and topological cat-

egories.A unsupervised learning approach based on SIFT fea-

tures is introduced in [26] to segment WCE video into four re-

gions due to the availability of large enough labelled databases.

The three segments boundaries are esogastric junction (B1),

pylorus (B2), and ileocecal valve (B3). Precisely locating them

using only the classification results of the four topological zones

is difficult. Cunha [5] defines an error function to be minimized

in order to estimate boundary positions. In [23], a naive seg-

mentation algorithm based on converging search, sliding win-

dows, and a hidden Markov model is described for analyzing a

sequence of single frame classifications. Yet, all three methods

above are based on classification results. None systematically

combine frame classification with boundary detection.Certain

efforts have been made for WCE vidoe segmentation by de-

tecting significant changes with respect extracted features as

in [8, 27] As we understand whenever there are significant

changes of color and texture there are changes for the incidence

of events such as boundaries transitions.Incorporating global,

model-based knowledge with classification will enhance perfor-

mance.

To briefly summarize the contents of the remainder of this

paper: In Section 3, we introduce single classification of WCE

frames, temporal statistics models, and global-constrained hid-

den Markov models. These are incorporated into a methodology
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that integrates classification with boundary detection. In Section

4, we describe the experimental design and describe the results.

In Section 5, we draw conclusions and suggest directions for

future research.

3. METHODOLOGY

The novelty of the approach described here is incorporat-

ing statistical analysis with pattern recognition for segmenting

gastrointestinal tract videos into the four zones. We take advan-

tage of the temporal statistics, consisting of model-based prior

knowledge and temporal inter-frame changes of visual features.

Prior knowledge is primarily based on the length of each zone.

(In more general contexts, a zone is a scene.) Based on the un-

derstanding that different zones of the GI tract have distinguish-

able visual characteristics such as color and texture, we utilize

concepts of pattern recognition to extract multi-component fea-

tures from images to train a classifier that labels them into cor-

responding classes or zones. Choices of features and classifier

are major factors. Each method – temporal statistics or classifi-

cation – can alone be applied to segmentation. The combination

of the two is better. Here we utilize a hidden Markov model

as a basic framework to incorporate statistical knowledge with

pattern knowledge in order that the three transition boundaries

be located automatically and accurately.

Figure 2: Framework

The choice of features and classifier influences the step that

follows – temporal analysis. Thus, it is necessary to describe

and justify the choices incorporated into the method.

3.0.1. Feature Extraction

Color and texture are generally conceded as best for distin-

guishing images from different organs. Four features are ex-

tracted from each frame. For color, the descriptors are scalable

color (SC) [20] and hue saturation component (HS) [21]. For

texture, the descriptors are local binary pattern (LBP) [22] and

homogeneous texture (HT) [28].

RGB and HSV are frequently used color models. Previous

research has indicated that HSV model is better for classifica-

tion and in [4] it was concluded that the MPEG-7 standard de-

scriptors, scalable color and homogeous texture, stand out as

best for WCE images. HSV performs better because varying

lighting conditions (as present in WCE) affect only the V com-

ponet. The scalable color descriptor is a histogram scaled into

256 bins – H component of 16 bins, S component of four bins,

and V component of four bins. The HS color descriptor [21]

is also based on the HSV model but the histogram only con-

siders the H and S components. A DCT transform was applied

(in [21] to compress the HS histogram. Both were deployed for

the experiments and a performance comparison is described in

Section 4.

Texture is another essential feature and the number of tex-

ture descriptors proposed is increasing. Some of them are spe-

cific gray-level images and others are on color images. Homo-

geneous Texture (HT) [28] is one of MPEG-7 standard funda-

mental tools [4] for describing multimedia content. The HT

descriptor provides a quantitative characterization and actually

a combination of a bank of Gabor filtered Fourier transform co-

effients of gray-level images. Besides HT descriptor local bi-

nary pattern (LBP) is a color texture feature which is extracted

from color images instead of gray images. In this paper, we ex-

tracted 3-D LBP histograms recently introduced by Connah and
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Finlayson [6]. 3-D means LBP features are calculated individ-

ually for three different color channels such as R, G and B. The

3-D LBP histogram is in fact the joint histogram of the three

independent histograms.

3.0.2. Classifier

Support vector machines (SVMs) have become a stable tech-

nology and provide good performance in general pattern recog-

nition tasks. For WCE video analysis researchers often utilize

SVMs for classification; in [21], Mackiewicz applied multivari-

ate Gaussian classifier and SVMs to classify feature vectors into

one of the four classes and concluded they provide superior per-

formance. For the SVM, four widely used kernel functions were

chosen and all were tested. Both [21] and [16] suggest that the

radial basis kernel provides the best classification result. Thus,

in this study we also applied a support vector machine on single

image classification and radial basis is chosen to be the kernel

function.

3.1. Modeling of Temporal Statistics

The modeling of Temporal Statistics consists of two major

component: Prior knowledge and temporal inter-frame differ-

ence.The four major segments in a whole GI tract are entrance,

stomach, small intestine and large intestine. The travel time of

the capsule camera in different segments are different,however,

segments of the same location are within a proportion range for

most of normal people. Normally, it only takes the capsule cam-

era minutes to travel in the entrance, 0.5-1 hours in stomach,

4-5 hours in the small intestine and 2-3 hours in the large intes-

tine. Thus the knowledge of the approximate transition time for

each part is what we first need to model statistically, which is

called here the a priori knowledge. Temporal inter-frame differ-

ence is used here to quantitatively capture the change of color

and texture between continuous frames so that based on the

prior knowledge and the temporal inter-frame difference vary-

ing transition probability with time elapsing is constructed for

each boundary individually, which will serve as the input for

GHMM together with the single classification results.

Figure 3: A Priori Knowledge for Each Segments: (a) Individually; (b) Corre-

lation Considered;

3.1.1. A Priori Knowledge

The a priori knowledge is dependent on the individual lengths

of the four zones. In order to fulfill this purpose, the a pri-

ori knowledge should satisfy the following criteria. One is for

each major zone the a priori probability should be a function

which monotonously, increases with time. The other criteria is
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that while starting at the value 0 (zero) immediately after the

previous boundary and ending at 0 (zero) and in between the

value should converge towards the value 0.5. The value 0.5 in-

dicates that within a range of time the a priori probability has

no influence on the transition boundary detection. The a priori

distribution can be modeled as cumulative probability. Poisson

distribution was found in studies [24] to match the distribution

of shot lengths. Since there are four major segments in the GI

tract with different lengths, it should be treated as four different

scenes. There should be a different a priori distribution for each

scene respectively.

Ps =
1

2

C(s)∑
f=λs

λf

f !
e−λ (1)

The parameter λs of the Poisson distribution represents the

average length of each scene s (s=1, 2, 3, 4) where 1, 2, 3, 4

represent entrance, stomach, small intestine, and large intestine

respectively. fλs is the frame counter and for each scene it starts

from the end of previous scene. And C(s) is the current scene

length at the frame f .

3.1.2. Temporal Inter-Frame Difference

Inter-frame difference has been used for shot detection or

transition detection to capture where the most significance changes

happen. Various methods were generated for measuring the dif-

ference between continuous frames such as template measure-

ments, color histogram measurement and χ2 [11]. However,

in this study we utilized single classification results to measure

the difference of continuous frame, which actually measures the

similarity between continuous frames in terms to color and tex-

ture.

With the classification results that each frame of a video at

time t (counter of frames) was assigned with four probabilities

of belonging to four major segments respectively [21] denote as

Pt1, Pt2, Pt3, Pt4

D12(t, t+ 1) = U(Pt,1 − Pt+1,1) + U(Pt+1,2 − Pt,2) (2)

D23(t, t+ 1) = U(Pt,2 − Pt+1,2) + U(Pt+1,3 − Pt,3) (3)

D34(t, t+ 1) = U(Pt,3 − Pt+1,3) + U(Pt+1,4 − Pt,4) (4)

Figure 4: Inter-Frame Difference: (a) D12; (b)D23 ; (c) D34

Dij is a inter-frame difference curve to capture the possi-

bility of transition from segment i to segment j. Intuitively,

whenever capsule camera transits from one segment to the next

probability of belonging to segment i at moment t Pt,i will drop

off when it comes to moment t+1. In the same way probability

of belonging to segment j at moment t Pt,j will arise up when it

comes to moment t+ 1. Dij were calculated to add two differ-

ence measured together and thus gives us an indicator of where

there is significant changes of color and texture with respects to

characteristics in four different segments.
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Figure 5: Gaussian Fitting for Global Constraints

3.2. Global-Constrained Hidden Markov Model

Hidden Markov models [18] have been applied in video seg-

mentation. In [21, 29] HMM is used as a framework to re-

fine classification results but transition probabilities are fixed

at any time. However, transition probability shouldn’t stay the

same since we have prior knowledge that traveling time in en-

trance is about minutes and traveling in small intestine costs the

most always. And we know that transition from one segment

to the next should happen at the time when there are signifi-

cant changes of contiguous frames in terms of color and texture

characteristics. Thus, a priori knowledge and inter-frame dif-

ference should help model a constrained transition probability

for HMM.The transition probability used in our method varies

when time elapses instead of being fixed, thus it is called in this

paper global-constrained hidden Markov model (GHMM).

After the a priori knowledge and inter-frame difference were

calculated as what is described in the previous section,Poisson

fitting was finally applied on the combined curve of a priori

knowledge and inter-frame difference to acquire the global con-

straints for the transition probability.

In figure 5 segmentation results of one WCE video com-

pared with the ground truth is presented and we see that two

boundaries were perfectly found and there were two errors for

the boundary between stomach and small intestine.

3.3. Image Registration for classification of Endoscopic Images

Image registration is the process of mapping the geometric

features from multiple images into a common coordinate sys-

tem. It is the basic step for integrating several overlapping im-

ages into a large composition of a 3D scene. It plays a very

important role in many computer vision applications like im-

age fusion, medical imaging, map updating, and multichannel

image restoration.

In general, image registration methods consist of four basic

steps: feature extraction, feature matching, transform model-

ing and image resampling .In the first step, (feature extraction)

salient and distinct features are extracted. In the second step

(feature mapping), the common features extracted are mapped

to establish a correspondence between the overlapping images.

From the recent literatures, various features are used to form

the correspondence between the overlapping images such as

SIFT descriptors (scale invariant feature transform), Harris cor-

ners, ICP algorithm (Iterative closest point), Mutual Informa-

tion, Least Square Error (LSE), and normalized cross corre-

lation (NCC). In the third step (transform modeling),mapping

function parameters are computed from the available feature

correspondence computed in the second step. Finally, (image

re-sampling) the sensed image is registered through the map-

ping function [7].

In our work, we used image registration to classify the en-

doscopic images from discriminating oesophagus, stomach, in-

testine and colon tissue. We use different sample of endoscopic

images for our experiment as shown in Fig 6. We use SIFT al-

gorithm for registration purpose. In our experiment, we used

two sample images as input to SIFT algorithm. SIFT algorithm
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gives number of feature points and number of matches between

two images. In our experiment, we classify the regions based

number of feature points present in the images. If the differ-

ence between number of feature points are less on a sample set,

then it belongs to same region of endoscopic images. If the

differences are higher, then it belongs to a different region of

endoscopic images or it belongs to a border region.

The Table 1, confirms the above discussion. Among all the

data sets, fifth data set (I5, I6) have higher difference between

feature points which indicates both images belongs to different

regions. The remaining data sets (1-3) corresponds to oesoph-

agus and data sets (6-8) are belongs to stomach region based

on feature point difference. In our work, we used image reg-

istration to classify the endoscopic images for classifying oe-

sophagus, stomach, intestine and colon tissue. We use different

sample of endoscopic images for our experiment.

4. Experiments and Results

The 15 WCE videos were divided into a training dataset (10

videos) and a testing dataset (five videos). Training dataset were

built up by selecting 5% images data from videos in the training

dataset. Feature: Scalable color, hue saturation component, ho-

mogeneous texture and local binary pattern color texture were

extracted and comparison of the performance between these fea-

tures were accomplished based on training dataset. Principal

component analysis was applied on each feature vector and the

length of each feature vector is 10. We trained the support vector

machine classifier with cost=1 and gamma=1 and 10-fold cross

validation were tested on downsampled dataset of original train-

ing dataset for the comparison of the performance of four fea-

tures. As what is presented in Fig.7, classification accuracy us-

ing four features individually were 50.94% (HT), 76.86% (SC),

79.39% (HS), and 87.97% (LBP), respectively. Apparently HS

is better than SC as a color feature and LBP is much better than

HT as a texture descriptor. And among the four, LBP performed

the best based on our dataset. Expectedly the combination of

four features gave us better classification accuracy than any sin-

gle feature.

Figure 7: Feature Performance Comparison Based on Classification Accuracy

Table 2: Results of the segmentation – SVM:classification accuracy when SVM

used only; GHMM: refined accuracy after GHMM was applied; E12: Esogas-

tric junction error; E23: Pylorus error; E34: Ileocecal valve error

Video SVM GHMM E12 E23 E34

V1 71.80% 99.95% 0 22 8

V2 91.29% 99.23% 6 430 4

V3 93.97% 97.41% 4 226 1250

V4 57.26% 98.14% 32 838 188

V5 59.06% 98.84% 2 0 644

Median 71.80% 98.84% 4 430 188

Mean 74.68% 98.71% 8 303 419

From comparison, we used a support vector machine as a

classifier to label WCE frames into four classes (entrance,stomach,small

intestine and large intestine). Predicted probabilities of four

classes related with each frame were also provided by SVM. For
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Figure 6: Classification using Image Registration: (a) first sample image from Oesophagus; (b) second sample image from Oesophagus;(c) third sample image from

Oesophagus;(d) fourth sample image from Oesophagus;(e) fifth sample image from Oesophagus; (f) first sample image from stomach; (g) second sample image

from stomach; (h) third sample image from stomach; (i) fourth sample image from stomach.

example one frame is labeled as stomach with the four proba-

bilities 0.05,0.90,0.05,0, which means it has the highest prob-

ability 0.9 to be stomach. In order to improve classification

result to the best, it is necessary to tune appropriately the pa-

rameters of SVM: gamma and cost. Grid search was used to

search for the best combination of these two parameters. We

processed every tenth frame of each video taking time consump-

tion into consideration. After SVM classification, GHMM was

applied to get the final segmentation result. We compared our

segmentation result of each video with the ground truth from

the expert. As what is shown in Fig.8 green segments represent

ground truth and blue ones is the results of our approach. Be-

sides 5 testing videos were tested and single classification result

after SVM,refined relative error after GHMM and exact errors

of three boundaries Z12,Z23 and Z34 were reported for all test-

ing videos in Table 2.

Classification accuracy from the SVM for testing videos is

not that satisfying since we have only 10 videos as the training

dataset. Two testing videos have classification more than 90%

and the others are not that good. But after applying GHMM the

median and mean accuracy was refined to 98.84% and 98.71%.

What’s more, mean error around Esogastric junction is 8, which

is within the error tolerance 10 since frame processing rate in

this experiment is 10 fps. More errors are detected around bound-
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Table 1: Results of the classification using image registration

Data Sets No of feature points Number of Matches Feature point difference Endoscopic Region

I1, I2 533, 603 14 70 Oesophagus

I2, I3 603, 486 17 117 Oesophagus

I3, I4 486, 490 16 4 Oesophagus

I4, I5 490, 491 14 1 Oesophagus

I5, I6 491, 206 4 285 Oesophagus,Stomach

I6, I7 206, 96 0 110 Stomach

I7, I8 96, 155 0 59 Stomach

I8, I9 155, 131 0 24 Stomach

Figure 8: Segmentation Results Compared with Ground Truth

aries Pylorus and ileocecal,however, there are 50,000-60,000

frames in each video so that Z23 = 303 and Z34 = 419 is

still satisfying. However, more efforts should be put on how to

reduce errors around Pylorus and ileocecal valve.

Comparing to the recent work in analysis of WCE in [19],

eventhough the accuracy was greater than 0.9, this approach

need lot of training set for classification. In contrast, our ap-

proach we are able to classify different classes from less number

of training sets with the same accuracy.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a new method to segment a WCE video

into four meaningful segments, which combining pattern recog-

nition and statistical analysis. It has simple work flow and presents

promising results. HS is a better color descriptor than SC; and

LBP performed better than HT as a texture descriptor based on

our dataset.Our proposed approach improved the overall clas-

sification accuracy and reduced errors around the three bound-

aries to an acceptable level. GHMM improved the classifica-

tion accuracy by combining classification results and statistical

knowledge.

Besides that we will apply more features to improve the sin-

gle classification results so that final segmentation result would

be refined further. Our research focus in the future will also

include reducing redundancy between frames since it happens

that the capsule camera gets stuck somewhere for a long time or

moves forwards and backwards within the same region. When

redundancy can be reduced appropriately, prior knowledge and

statistical analysis will be more reliable and thus final segmen-

tation results will be better.

In future, we plan to register different frames of WCE video

based on their overlap and build 3D images for more accurate

segmentation. 3D views of scene will aid segmentation and it
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will help a clinician make better decisions.
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